
AD 3 020 DETERMINING THE' NUMBER 
OF COMPONENT CLUSTERS 

IN THE
STANDARD MULTIVARIATE (U) ILLINOIS UNIV AT CHICAGO
CIRCLE DEPT OF QUANTITATIVE METHODS H BOZDOGAN

UNCLASSIFIED 16 JUN 83 UIC/DQM/A83-1 ARO19085.5 MA F/G 12/1 NL

EIIEEEEEENII
IIEIIIIIEEIIEEEEIIIIEEIIII



*IIIIJ L *1-5

L 6 n l'

11111 L4.25

MICROCOPY RESOLUTION TEST CH-ART

NATIONAL BUREAU OF STANDARS-1963A



~~19 jq6g. M-iA
OETERMINING THE :UMER OF COMPONENT CLUSTERS
IV1 THE STANDARD 'IULT:VARIATE NORMAL MIXTURE

MOOEL USING MODEL-SELECTION CRITERIA*

by

HAMPARSIJM BnZDOGAN

TECHNICAL REPORT NO. !IC/DQM/A83-1
June 16, 1983

CPREPARED FOR THE
ARMY RESEARCH OFFICE

UNDER
CONTRACT OAAG29-82-K-0155

with the University of Illinois at Chicago

Statistical Models and Methods for

Cluster Analysis and Image Segmentation

Principal Investigator: Stanley L. Sclove

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

OUANTITAT:VE METHCS DEPARTMENT
COLLEGE OF USINESS APMINISTRATION
UNIVERSITY OF ILLINOIS AT CHICAGO

POX 4348, CHICAGO, IL 6n6PO

Approved for public release; distribution unlimited

LUj

- " U, k ,

*Presenred at the Fourteenth Annual 'eeting of tne Classification

Societ/ Clortm AWerican 3ranch ' , Thiladeipnia, DA, May 29-31, 1983.

83 06 80 021



~~0 INE*~ OI CNS, IND/OR F IND I iNGS CCNT I NErD 7 T,,IS ' CR
C' S E F TH E A UT1HOR ( S) AD S ZHOULD ',OTl E iOSRE AS LN LFiC

E?;R>~ET O THE a:WY P02 L~N. POIY OR E N INS Ili



REPORT DOCUmENTATION PAGE INWUHJ,

Technical Reporei No. UIC/DQM/A 3-pq1  CM i

Determining the Number of Component Clusters i Technical Report
in the Standard Multivariate Normal Mixture
Model Using Model-Selection Criteria 1bPC14.MN~rON;. 64EMOOT q~t

7 6U~ot. rS)nTRACT OGTAiTj.kR#,

Hamparsum Bozdogan DAAG29-82-K-Ol 55

a EmO~,,r.OAC.AMZ & Twon "A.E &no AOft1ESS t6~
4

.A LdrLmtT POEZT TA,

University of Illinois at Chicago
Box 4348, Chicago, IL 60680

I' .. "O LL1014g . 06VICI! MAUC Aft.J A0014k%! i M t P8.MH I, A T t

June 16, 1983
- --. WXi.'.) ftUidCUE Of I-AGE$

7r -'L nl*;*~ r 42 + iii

0 . C ASSIFICATION' OOWGRAOIG
$C.4EOULE

16. 04STRUTIOlw STATENEN? (041 this Report)

;A provea for public releahe; aistrLution urniirmteo.

The view*. opinions. jnd/or finuingbs contjinea in ti, report are tnu-se ot trne
jutnorWt, and -jnould not be coflstruci ,jb in otficiii L.,p.orrroenr of tht, Ar!i',
00'.,10on. joiicy. or deci~on, unlezs su owztynuteu uy otner aucutentator.

19 i E V 604001 (k-0WOo .g** 0 004 it* cIS C o dr IfAee y 1U IdSnteil OW us- .0-

Standard multivariate normal mixture model; Akaike's Information Criterion

(AIC); Schwarz's Criterion (SC)

r C, - anto s en ."toe some ofive~m o two fe .a. #.,ah ne proolem of clustering individuals is consiclered within the context of

a muitivariate normal mixture using model-Selection criteria. Often, :rie

numoer k of components in tne mixture is not Knlown. In pra i cal prool ems ,

tie *quest,.on arises as :o, the appropriate cnoice of k. The orobiem is to

DO Oto 1473 ED, rlOiNOF I OVAIIS11OUIOL L T I t~j~

.4....v - 5tI AT").# .11, T..,i HA& When a.tn.*g



- UNCLASSIFIED

SEOAUMV =.AaUF1CAP o9 00 -%IS PAGE9 -- M f

(Abstract, continued)

--decide fow many components are in the mixture, a difficult multiple aecision

problem. -

In the statistical liter4ture, several hypothesis testing variety of

criteria have been proposed for th:i rpose. However, all these criteria

possess sampling distrioutional problems. What the null distribution of the

criterion is if tne data actually contain k clusters is not known, ana remains

largely unresolved still.

> Two well Known model-selection criteria, namely Akaike's Information

Criterion (AIC) and Schwarz's Criterion are proposed for tne first time as two

new approaches to the problem of what the appropriate choice of k in the mix-

ture multinormal model should be. The forms of these two moael-selection

criteria are obtained in the standard multivariate normal mixture model.

Analyses are carried out on the same data set by applying the model-lection

criteria for different choices of k using the _jyt-j'rr -lgoritm under two

assumptions with common covarianice matrices between the component normals, and

witn varying cova ance matrices in determining the appropriate number of

types or clusters. The results are obtained when data initially partitioned

into equal size groups; when data initially reordered; wnen data initialized

by k-means algdrithm; when data initialized by special initialization schneme;

and when special initialization scheme is used on reordered data.
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DETERMINING THE NUMBER OF COMPONENT CLUSTERS IN
THE STANDARD MULTIVARIATE NORMAL MIXTURE MODEL

USING MODEL-SELECTION CRITERIA*

HAMPARSUM BOZDOGAN
Department of Quantitative Methods
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ABSTRACT

The problem of clustering individuals is considered within the context of

a multivariate normal mixture using model-selection criteria. Often, the

number k of components in the mixture is not known. In practical problems,

the question arises as to the appropriate choice of k. The problem is to

decide how many components are in the mixture, a difficult multiple decision

problem.

In the statistical literature, several hypothesis testing variety of

criteria have been proposed for this purpose. However, all these criteria

possess sampling distributional problems. What the null distribution of the

criterion is if the data actually contain k clusters is not known, and remains

largely unresolved still.

Two well known model-selection criteria, namely Akaike's Information

Criterion (AIC) and Schwarz's Criterion are proposed for the first time as two

new approaches to the problem of what the appropriate choice of k in the mix-

ture multinormal model should be. The forms of these two model-selection

criteria are obtained in the standard multivariate normal mixture model.

Analyses are carried out on the same data set by applying the model-selection

criteria for different choices of k using the mixture algorithm under two

assumptions with common covariance matrices between the component normals, and

with varying covariance matrices in determining the appropriate numoer of

tyoes or clusters. The results are obtained when data initially partitioned

into equal size groups; when data initially reordered; vhen data initialized



by k-means algorithm; when data initialized by special initialization scheme;

[and when special initialization scheme is used on reordered data.

Key Words and Phrases: Standard multivariate normal mixture model; Akaike's

Information Criterion (AIC); Schwarz's Criterion (SC).
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MODEL USING MODEL-SELECTION CRITERIA*
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1. Introduction

What is the most appropriate number of clusters for a set of data? How

do we decide the number of clusters present in the data? Which cluster or

clusters do we choose? These are some fundamental questions confronting

practitioners and research workers in classification and clustering. The

importance and the difficulty of this problem have been noted by many authors

such as Beale (1969), Marriott (1971), Calinski and Harabasz (1974), Maronna

and Jacovkis (1974), Matusita and Ohsumi (1980), and others. For a good dis-

cussion on some of the test procedures used in deciding and determining the

number of clusters, we refer the reader to Milligan (1981), Dubes and Jain

(1979), and Everitt (1979, 1974).

It is reasonable for an investigator to discover whether there is any

structure in the data, or whether they indicate just a single cluster or

group. If there is only one group, that is, no cluster structure, then most

investigators would decide that clustering techniques were not needed. Dis-

covering the structure in the data has its own practical importance. For

example, in studying medical and psychological syndromes; processing remotely

sense data for target identification or for predicting crop yields; in prob-

lems of taxonomy; and in many other applications we might want to find out

whether the observations fall into natural groups or not. If they do, then we

.nignt want to discover how many groups or clusters there might be, and how do

we identify and interpret them?

In the literature, numerous attempts have been made to devise reasonable

*Presented at the Fourteenth Annual Meeting of the Classification

Society (North American 3ranch), Philadelphia, PA, May 29-31, 1983.
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indicators for the problem of choosing the number of clusters present, identi-

fication and interpretation of clustering results by many investigators. Still

today, however, there is no satisfactory solution and a unified flexible

approach. The major difficulties with deriving formal significance tests

similar to those of ordinary "t" and "FP test statistics in cluster analysis,

appear to be the difficulty of determining the sampling distribution of the

proposed test statistic [Everitt (1979)]. The problem of deriving a sampling

distribution is formidable, and the choice of a fixed level of significance for

comparison of different number of clusters with various number of parameters is

wrong since this does not take into account the increase of the variability of

the estimates when the number of parameters is increased. Therefore, the

theoretical difficulties faced in deriving sampling distribution of a proposed

test statistic, in the context of cluster analysis, are rather involved and not

practical. This point has been advocated by Gnanadesikan and '4ilk (1969), and

others in the literature.

This suggests that, if we use the formal signficance test type indicators

or statistics in conjunction with the clustering algorithms or techniques,

then we must devise a criterion (or criterions) which will combine both the

estimation problem and the testing together to decide on the number of

clusters present in a data set.

Therefore, in this paper we shall propose and establish two theoretically-

based procedures in deciding and determining tne number of clusters present,

identifying the test clustering alternative or alternatives. We shall achieve

this by introducing two well known model-selection criteria, namely, Akaike's

:nformation Criterion ,AIC), and its derivative, Schwarz' Criterion (SC' as .wo

new and unifying procedures.

Thus, the main 'ocus of this oaper will be to snow how to use these
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two model-selection criteria in deciding and determining the number of

component clusters present in the standard multivariate normal mixture model

without knowing a priori classification of the observations.

In Section 2, we shall discuss the standard multivariate normal mixture

model and the clustering criteria used under this model, namely, the maximum

likelihood approach. In Section 3, we shall discuss and review the use of

fitting the mixture model to determine the number of component clusters, and

its corresponding unresolved problems. We shall, in Section 4, present the two

model-selection criteria, and list their important general characteristics. In

Section 5, we shall give the forms of the model-selection criteria to be used

in standard normal mixture model approach to clustering. We shall apply these

two model-selection criteria in Section 6 in deciding and identifying the num-

ber of components or clusters present in the Fisher iris data and present the

numerical results. Finally, in Section 7, we shall present conclusions and

discussion.

2. The Standard -Multivariate Normal Mixture Model

2.1. The Model

As has been suggested before [see, e.g., Fleiss and Zubin (1969)], often

when we consider clustering problems it seems relevant and logical to consider

the sample as arising from several different populations rather than a single

population since the individuals within a class or group differ from one

another. That is, each individual in the sample is assumed to have come from

Ine of several populations (types).

Given a sample from the overall mixed population, or assuming that the

sample nas come from a mixture population, the problem from a clustering view-

point is to determine and describe the number of subpopulations or groups, the

maim



parameters of the distribution characterizing each subpopulation or group, and

which group each individual belongs to.

Therefore, the problem of clustering individuals, objects, or cases, to be

considered here, will be studied within the context of a mixture of multi-

variate normal distributions.

More specifically, we shall consider a multivariate normal mixture model,

K

k= I

where - (I,12,..., K-1 are K - I independent mixing propor* and are

such that

0 < rk < I TK:7

k=1

and where fk(; ',, Z) is the k-th component multivariate normal density, given
k k

by

(2.1.2) fk(X; k,_k) : (2n1)'/ 2t .k{'i 2 exp{-1/2(X - l -

The model given by the p.d.f. in (2.1.1) is called the standard multi-

variate normal mixture model to distinguish it from the modified conditional

mixture model considered by Symons (1981), Sclove (1977,1982), Scott and Symons

(1971), and John (1970).

In the statistical literature, several authors, including Wolfe (1970),

Jay (1969), 3inder (1978), Hartigan (1977), and others, have considered clus-

tering problems in which a standard mixture of multivariate normals is used as

a statistical model given by (2.1.1).
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2.2. Clustering Criteria: The Maximum Likelihood Approach

Wolfe (1970) has considered clustering based on the standard normal mix-

ture model. He uses the maximum likelihood (ML) approach to estimate the

mixing proportions tIk , the mean vector uk and the covariance matrices :. The

maximum likelihood estimators (MLF's) nave well known desirable properties and

it is natural to consider the ML approach for estimating the parameters in a

mixture of multivariate normal distributions. To estimate the parameters the

likelihood of the data is required which is given by

n K
(2.2.1) L(Xe) = n {7 kf (X i;a )

i=1 k=1 :-

or the log of the likelihood is

n K
(2.2.2) 1 = log L(XJo) = lo(Xge i e ke"

It is the likelihood in (2.2.1) or the log likelihood in (2.2.2) that is

maximized with respect to 3 = (12.. Z,1,2...,k,_12 lk), the

vector of parameters, by Wolfe (1970) and Day (1969). The maximum likelihood

equations are obtained by equating the first partial derivatives of (2.2.2) witn

respect to the ak the elements of each vector k and those of each matrix

to zero. These equations are solved iteratively by a modified Newton-Raphson

method. The iterative MLE's are given by

n

(2.2.3) Pk .. (k.Xi) k=1,2,...,K-I

(2.2.4) =k : ---- 7 X. ?(k.X) kP1,2, ... K-a-1
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(2.2.5) P (kX- 12..
nfl 1 =1 1 -K - 1 Ki

where

I= the mixing proportion for type or cluster k,

a= vector of means for cluster 'K,

1= covariance matrix for cluster k,

X. = vector of observations for the i-th point in the
-1 sample, and

Il k -i;- '-k
P(kIXi) = a posterior probability of

~ ~k~P ~'~k~ group membership of X. in
k=1 cluster k. -

If the clusters have a common covariance matrix, then we use

(2.2.6) 1 K

Since the iterative process is used to solve the equations, actually,

several sets of values may satisfy the equations, and the results may depend on

:hIe initial values for the iteration process. Since mixture 3nal./sis attarnots

to find maximum-likelihood estimates of the parameters, the best solution-for

our purposes is the one with the greatest likelihood, or the greatest log li~e-

li hood.

Once the M'LE's are known, we can regard each distributon as indicating a

separate cluster, and individuals are then a! signed )y the 3ayes allocation
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rule. That is, assign Xi to the K-th distribution when

(2.2.7) .1f f i; l1 ) kf(Xi;4kZ k )  for all 1 I k

This process is repeated, increasing the log likelihood at each stage, until no

further reallocation of the X's occurs. Another way to put it, individual i is

assigned to that component (or group) k for which the estimated posterior

probability of group membership, P(kIXi), is largest. Therefore, for a parti-

cular individual i, the optimal {0(kOXi)} will be P(klX i ) = 1 when the indivi-

dual i is from component (or group) k and zero otherwise.

It should be noted here that, this is one of the points where the standard

normal mixture model considered here, differs from that of the conditional mix-

ture model. That is, in the conditional mixture model, the individual i is

assigned to group k for which the estimated density is largest rather than the

estimated posterior probability of group membership which happens to be the case

in the standard n.rmal mixture model. For more details on this, refer to Sclove

(1979).

3. Fitting the Mixture Model to Determine the Number of Component Clusters:

Unresolved Problems

As we mentioned in Section 1, we may want to ask wnether there really is a

mixture or 4nether there is just a single underlying component cluster. In

practice, this could be the sort of question we might be interested in since

fitting the standard normal mixture model to determine the number of component

:lusters has many practical importance and use. For example, we may want to

determine "he number of disease types in the study if disease patterns, the

nlood oressure types, ind psychiatric disorder types. In reliablity inalysis,



we may want to determine the number of laser types on tne basis of mean laser

life. Lasers are employed in telephone communication systemrs in which coherent

laser light is used to transmit telephone communications. In image process-

ing, we may want to determine the number of classes of segments, etc.

As it was noted by Sokal (1977), the problems of inference on the number

of clusters "actually" present in a set of data, and of testing for model fit,

have not yet received much successful attention but more and ;lore are recog-

nized as important.

Thus, the standard mixture problem will be to decide how many component

clusters are in the mixture, a difficult multiple decision problem. A simpler

problem is to decide whether k=r or k=r+l component clusters are necessary.

In practice, it is common to specify a larger hypothesized number of clusters,

say k, and create sequence of k=1,2,...,K component clusters y using the mix-

ture algorithm.

In the literature, several methods have been proposed in determining the

number of component clusters when the technique of fitting standard normal

mixture model is used. One type of these techniques are informal graphical

techniques, and the other type is more formel hypothesis testing variety of

technique.

When the technique of fitting mixture of distributions is used as a

clustering technique, likelihood ratio test is a more natural Criterion for

testing the number of component clusters or groups in this context. However,

as we snall see, it nas its thorny problems.

Let K lenote the maximized likelihood, for given k. Then

L3. /L k
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is the likelihood ratio statistic for testing k clusters against k' clusters

(k < k'). From a Monte Carlo investigation, Wolfe (1971) arrived at and

suggested an adjusted likelihood ratio test in which the statistic (not count-

ing the mixing proportions):

(3.2) -2 * 1 (n - I - p k')2og (chi-square)

with degrees of freedom f = 2p(k' - k), where

n = sample size,

p = number of variables,

k = number of component types in the null hypothesis,

k' = number of component types in the alternative hypothesis.

After performing a small scale simulation study, Wolfe (1971) on the

basis of the results recommended using the modified likelihood ratio test given

in (3.2) for k=1 against k=2, when under the alternative hypothesis the two

c3.ponents are assumed to have the same variance-covariance matrix. But,

Wolfe's simulation results suggest that even in reasonably large sample sizes,

the statistic in (3.2) does not appear to be asymptotically the usual chi-

square. In Wolfe's simulation, some of the sample means and variances are

quite different from those corresponding to the stipulated chi-square distribu-

tions. Also, the same results may not be true when under the alternative

hypothesis tne two components are assumed to have different variance-covariarce

matrices. moreover, it is important to note that in the standard mixture prob-

lem, the likelihood function is a different function for different values of k,

wnere '-I,2...K. Therefore, in the context of the standard mixture model, the

.uest~on that arises, and that remains largely unresolved still, is what the
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asymptotic null distribution is if the data actually contain k=1,2 . K

clusters.

Others in the statistical literature, have also cited the distributional

problems of the likelihood ratio test statistic in the mixture problem. For

example, Hartigan (1977) speculated that the log likelihood ratio lies between

1 and 1 2 where p is the number of variables. ginder (1978), on the

other hand, argues that the likelihood ratio criterion given in (3.2) is not

necessarily asymptotically chi-square distributed since

H0: f=l

(3.3)
H1 : <ri < 1.

Here, under the null hypothesis, !7, the mixing proportion, is on the boundary of

the parameter space, and the likelihood ratio criterion takes the value zero

when 1, the maximum likelihood estimate for VT, is 1 with probability , and

therefore, under the null hypothesis, the likelihood ratio criterion cannot be

asymptotically X2 .

Behboodian (1972), shows that as the component densities become closer

and closer to each other, the information matrix approaches a singular matrix

with some diagonal elements equal to zero. The same thing happens when the

mixing parameter I tends to one or zero. Consequently, Behboodian concludes

that for estimating the parameters in a mixture where two component clusters are

well separated, or which has a mixing proportion close to zero, very large

samples may be needed. For example, for a fixed total sample size n, when 4e

run the mixture algorithm for a very large hypothesized number of clusters K,

tne mixing proportion .7 starts tending to zero. To put it in arother way, as K,

tne desired total number of component clusters, gets larger and larger for a
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fixed sample size n, then the mixing proportion 1I tends to zero. Thus causing

tne information matrix to be singular. For this reason, we need very large

samples to fit the standard normal mixture model to ensure that the component

sample sizes are large enough so that the information matrix will not become

*singular.

This point raises another important question as to what the appropriate

hypothesized number of component clusters K should be for a fixed sample size

n to fit the mixture model. In the literature, this point has never been

studied before, and certainly deserves more attention which will be a subject

of futher study later.

A rule of thumb, however, is to use K~(n/2)1 / 2 suggested by Mardia, et.

al. (1979), where K is the total hypothesized number of component clusters,

and n is the total sample size.

In reviewing the literature further, we see that some simulation results

of Everitt (1981) snow that the suggestion of Wolfe (1971) seems reasonable

only in cases where n>1Op. That is, the sample size n is of order lop, where

p is the number of variables, for testing one standard normal mixture model

against only two standard normal mixture models when the two components are

assumed to have the same variance-covariance matrix. According to Everitt's
iarge scale simulation results, Hartigan's (1977' conjecture does not seem to

oe correct. However, at this point, Everitt's results cannot )e extended to

ie true for testing two standard normal mixture models against three, three

igainst four, four against five, and so forth, since there noes not exist any

easonable Monte Carlo validation of the significance testing procedure given

4n '3.2).

'tilizing established results in the literature on the diszrihution
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of the log likelihood ratio test statistic when the true parameter is "near"

the boundaries of the hypothesis regions, we can reflect the key distribu-

tional requirements of the model.

Following Feder (1968), we state that, when the data can be represented

by n independent random variables with identical distributions depending on

the parameters (e1S 2 ,...lek) then the limiting distribution (as nri.) of

(3.7) -2log e(likelihood ratio)

is, under certain sequences of alternative hypotheses converging to the null

hypothesis which appears to be the case in testing mixture models, a non-

central chi-squared distribution. This result is due also to Wald (1943).

According to this result, it seems that for the mixture problem the key

distributional requirement for a test is

a.d. '2
(3.8) - 2C(n,pK)logex- Xf (i) (noncentral chi-square)

where

f number of degrees of freedom,

6 = noncentrality parameter, and

1 K
C(n,p,K) = -(n - 1 - p --. ) = correction factor,

n = sample size,

p = number of variables,

K = total number of components hypothesized in the mixture
model.

In the next section, that is, in Section 4, we shall introduce the two

well known model selection criteria to be used to estimate k (k=1,2,...,K), the

number of component clusters in the standard normal mixture model. First some

general explanations on model-selection criteria will be appropriate.
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4. Model-Selection Criteria

In the literature, model selection or identification problems continues

to attract a great deal of interest among statisticians and other scientists.

The major effort in this respect has been channeled towards simple criteria

for choosing one of a set of competing models to describe a given data set.

Much of this interest has been stimulated by the fundamental work of Akaike

(1973) and by the appearance of an information criterion due to him, known as

Akaike's Information Criterion (AIC). Therefore, one group of criteria we see

in the current statistical literature are based on Boltzmann's (1877) entropy

or the Kullback's (1959) information, such as Akaike's Information Criterion.

The other main group of criteria are Bayesian. Among the Bayesian, in par-

ticular, here we shall consider only Schwarz' Criterion (SC).

Next, we give the formal definitions and some of the important character-

istics of these two model-selection criteria.

4.1. Akaike's Infornation Criterion (AIC)

Suppose there are K alternative models Mk9 k=1,2,...K, represented by the

densities f1(.!21 ), f2(.!02),...,fK(-!2K) for the explanation of a random vec-

tor X and given n observations. In 1971, Akaike first introduced an informa-

tion criterion, which has become known as Akaike's Information Criterion (AIC)

for the identification and comparison of statistical models among a class of

competing rodels with different number of parameters. It is defined 1y

''.1.1) AIC(k) -2 ln~riax L(k) + 2m(k

or symbolically is aefined by

1 .1.2) AIC = -2 In(maximized likelihood)

+2 (number of parameters estimated 4itbin
the model).
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In (4.1.1), L(k) is the likelihood when Mk is the model, max denotes its

maximum over the parameters, and m(k) is the number of independent parameters

when M k is the model.

The statistic AIC(k), was obtained by Akaike (1973, 1974) with the aid of

an information theoretic interpretation of the method of maximum likelihood.

It is a natural estimate of minus twice the expected log likelihood of the

model whose parameters are determined by the method of maximum likelihood.

The minused expected log likelihood is, except for an additive constant,

identical to the (generalized) entropy, or the "cross-entropy," which is a

measure of goodness of fit or closeness of the estimated, fitted, or predic-

tive model to the true model. From this point of view, when several competing

models are being compared or fitted, AIC(k) is a simple procedure which

measures the badness of fit or the discrepancy of the estimated model from the

true model when a set of data is given. The model chosen is the one which

minimizes AIC and is called the minimum AIC procedure. The first term in

(4.1.1) stands for the penalty of badness of fit when the maximum likelihood

estimators of the parameters of the model is used. The first term is also

known ai the measure of inaccuracy [see, e.g., Stone (1982)]. The second term

in the definition of AIC, on the other hand, is interpreted as representing a

penalty that should be paid for increasing the number of parameters, or

compensation for the bias or increased unreliability in the first term due to

the increased number of parameters. The second term in AIC, is also known as

the complexity of the selected model. If more parameters are used to describe

the data, it is natural to get a larger likelihood, possibly oithout improving

,he goodness of fit. Thus, AIC avoids this spurious improvement of fit by

penalizing the use of additional parameters. In this sense, the IC may .e
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regarded as an explicit formulation of principle of parsimony in model build-

ing. In the statistical literature, the interpretation of the second term in

AIC as a measure of the complexity of the model M,, corresponds to the

principle known as Occam's Razor, which emphasizes the desirability of select-

ing accurate and parsimonious models of reality. This principle is also

closely related to the principle in hypothesis testing which emphasizes the

desirability of considering "substantive" significance as opposed to statisti-

cal significance. For more details on this, we refer the reader to Hodges and

Lehmann (1954).

We now list some of the important characteristics of Akaike's Information

Criterion (AIC) as follows:

(i) AIC is defined without specific rof-rence to the true model .

Thus, for any finite number of param-tric models, we may always con-

sider an extended model that will play the roll of f(.VIr). This

suggests that AIC can be useful for the comparison of models which

are nonnested, i.e., the situation where conventional log likelihood

ratio test is not applicable as mentioned by Akaike (1982).

(ii) The value of AIC decreases quickly as the number of parameters being

adjusted is increased and then increases almost linearly when too

many redundant parameters are included in tne model. For more on

this, refer to Akaike (1978), Smith and Spiegelnalter (19P0).

'ii ~According to AIC, inclusion of an additional parameter is appropriate

if Inrmax L] increases )y one unit or more, i.e., if -iax L increases

y a 'actor of e or more.

v IC :an have positive or negative values lepending )n the situation.
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If we let L(k) = max L(k) when Mk is the model, with, say k, number

of parameters, and L(k+1) = max L(k+l) when M is the model, with,k+1

say k+1, number of parameters, and if L(k+l)/L(k) > e, then AIC(k) is

positive. If L(k+l)/L(k) < e, then AIC(k) is negative.

(v) AIC does not require level of significance or table look-up.

(vi) The relationship between the AIC and the conventional likelihood

ratio test statistic can be written as

(-?)ln k(Ho;H,) = AIC(Ho) - AIC(Hj) - 2k,

wnere the model H1 contains the model H as a restricted family of

distributions of H! and k denotes the degrees of freedom of the chi-

square distribution of the likelihood ratio test statistic.

d.2. Schwarz' Criterion (SC)

Schwarz (1978) proposed a model selection procedure which minimizes the

criterion,

(4.2.1) SC(k) = -2 ln[max L(k)] + m(k)ln(n),

where n is the number of independent observations. This criterion is ohtained

by analyzing the behavior of the posterior probability of the model 4 when

n grows to infinity under the assumption of some arhitrary positive a orionri

probability distributions on the parameters. Therefore, this criterion is a

3ayesian criterion. For this reason, we shall abbreviate it as SC, instead of

S:C. One should note tnat, SC and AIC are qualitatively the same, hut they
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are quantitatively different from one another only in that the number of esti-

mated parameters is multiplied by In(n), the natural logarithm of the sample

size.

We now list some of the important characteristics of Schwarz' Criterion

(SC) as follows:

(i) SC assumes a fixed penalty for guessing the wrong model.

(ii) For small sample sizes, SC favors lower-dimensional models as

compared to AIC. However, depending on the nature of the priors on

the parameters and the nature of the model fitted, Schwarz' approxi-

mation may fail in small samples. Nevertheless, for large sample

sizes it has its own advantages.

(iii) According to Schwarz' Criterion (SC), an additional parameter will be

included if it increases ln~max L] by an amount ln(n)/2, that is, if

max L increases by a factor of V nor more.

(iv) Like AIC, SC can also have positive or negative values depending on

the situation. That is, if L(k+1)/L(k) > / , then SC(k) is

positive. On the other hand, if L(k+1)/L(k) <I , then SC(k) is

negative.

(v) Also SC does not require level of significance or table look-up.

5. The Forms of Model-Selection Criteria in Standard Normal Mixture !Aodel

Despite the recent development of the use of statistical methodology and

--odels in many disciplines, it seems t~lat in many situations the difficulty of

:onstructing an adequate nodel based on the available sample information is
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not fully recognized. Cluster analysis is a case in puirt.

Recall that k denotes tne number of clusters or component clusters.

Usually k is permitted to vary: k=1,2,...,K, say. Each choice of K cor-

responds to a different model for the data. One has to estimate the

parameters, say k2' of this model. Then one computes the likelihoods L(k),

k=l,2,...,K and is faced with the problem of comparing them. That is, in

classification and clustering we have the problems of identifying and dis-

covering the number of clusters present in the standard mixture model, without

any a priori information about the data.

Such problems of statistical model identification suggest the introduc-

tion and the application of practically useful and versatile, and yet theore-

tically sound criteria of "fit" of models such as the ones we discussed in

Section 4.

We, next, give the forms of AIC and SC to be used in standard normal

mixture model approach to clustering.

For the standard mixture model, we first, consider our conjecture in

(3.8) and show the form of AIC under this conjecture by stating and proving

the following theorem.

Theorem 5.1. If -21n \afd. 4f (5)(non-central chi-square) with f = (M-m)

degrees of freedom, then

(5.1) AIC*(k) = -2Cln[max L(k)] + 3m(k),

wnere C (n I ) correction factor,
n 7n- -

k=1,2, ...,< number of component clusters, or types,
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m(k) = kp 4. (k-1) P'pl number of parameters includinq the
2 mixtire proportions when covariances

are eCUal

m(k) = kp + (k-i) + k P(P+1) number of parameters including the
2 mixture proportions when covariances

are di1fferent hetween clusters, and

M = m(K).

Proof. In general,

(5.2) -2nE[B(f;f)J -2nE[entropy] 6 + m.

where E denotes the expected value, 5 = n ~ 2e-2re is the noncentrality

parameter, HIII"stands for the Euclidean norm. with respect to J = (J. .),

the (.kxk) Fisher information matrix, and m denotes here, the number of para-

meters. We asserted in (3.8) that

(5.3) -21n xad '2*Xf()

where f = 2(M-m) is the number of degrees of freedom, and 5, is the noncen-

trality parameter. As is well known,

(5.4) -2Cln x = Er-2Cln ),7 ErXf2(5)1 = 5 + f S+ 2(M-m).

H-ence, solving (5.4) for 5, the noncentrality parameter, we have

(5.5)5 =-2Cln \-2(M-m).

%Jow substituting (5.5) into (5.2), we obtain

'5.5'-2nE[3() .5 rnm

-2Cmn \-2(,I-m( +

= 2Cm In 2M +3m.
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Since

ax Lk

(5.7) in \ In max K = In[max L(k)]-Infmax L(K)],
max LK

and since AIC estimates the quantity -2nErR], then from (5.A), we have

(5.8) AIC z -2Cln~max L(k)] + 3m - 2M + 2Cln[max L(K)l

For comparison purposes, it suffices to ignore the additive terms -2M and

2ClnCmax L(K)] in (5.8. Thus, for the standard mixture model AIC in (5.8)

takes the simple form

(5.9) AIC*(k) = -2ClnEmax L(k)] + 3m.

To make ATC''<' comoatahle with SC(k), we can even drop C, the correction

factor, and use

(5.10) AIC*(k) = -2lnCnax L(k)] + 3m.

As we mentioned hefore, stimulated by the appearance of the Akaike's

Information Criterion (AMC), Schwarz (1978) has recommended the model selection

criterion,

(5.11) SC(k) = -2ln!,max L(k)] + m(k)ln(n),

wnere k=1,2,...,K = number of component clusters, or types,

rm = m(k)

m(k) = <-I) + = number of parameters including themixture proportions when :ovariances

are equal,

m(k) <p -I + <2- = numoer of parameters including the
mixture proportions when covariances
are different between clusters, and
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M = M(K)

for the standard mixture model.

Having defined these two well known model-selection criteria for the

standard normal mixture model, in the next section, Section 6, we apply these

two criteria to the famous Fisher iris data. In doing so, we shall attempt to

improve Wolfe's and others' results without the worry of what the appropriate

significance level a should be in testing the hypothesis of different compo-

nent clusters in order to discover or identify and describe the clusters or

types in the mixture model.

6. Application of Standard Normal Mixture Model to Fisher Iris Data

In this section we shall apply the standard normal mixture model to the

well-known Fisher (1936) iris data. We shall give the numerical results from

the mixture model by performing different analyses on the iris data by apply-

ing the model-selection criteria for differnt choices of k. We shall accomp-

lish this by using the mixture algorithm under two assumptions: common

covariance matrices between the component normals, and varying covariance

matrices in determining the actual number of types or species in the Fisher

iris data.

The iris data consist of four characteristics (p=4) for three species of

iris; the species are Iris setosa (S), Iris versicolor (Ve), and Iris

virginica (Vi), and the characteristics are sepal length, sepal width, petal

length, and petal width. Each group is represented by 50 plants, ind hence

tnis data set is composed of 150 iris species in total.

This data set has been quite extensively studied in classification dnd

cluster analysis since it vas published by Fisher (1936), and still today,

is being used to test the practical utility of various classification and
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clustering methods proposed by many investigators such as Friedman and Rubin

(1967), Kendall (1966), Solomon (1971), Mezzich ant, Solomon (198n), and many

others, including the present author.

For each of the 150 plants we already know the group structure of the

iris species, namely K=3 groups or samples. Even though the two species, Iris

setosa and Iris versicolor were found growing in the same colony, and Iris

virginica was found growing in a different colony, Fisher reports in his

linear discriminant analysis the separation of I. setosa completely from

I. versicolor and I. virginica. Since then other investigators have shown

similar results in their studies such as the ones we mentioned above.

With this in mind, for our purposes, if we were presented with the 150

irises in an unclassified manner (say, before the three species were

established), then the mixture analysis using model-selection criteria

attempts to discover and describe the types of irises without using any

a priori classification information.

Using the NORMIX programs (i.e., normal mixture programs) of Wolfe

(1967), which are modified and extended by this author, on the Fisher iris

data, we ran normal mixtures with different covariance matrices between the

clusters (i.e., types), and normal mixtures with common covariance matrices.

in noth cases, we ran k=1,2,...,7 types and computed AIC*(k)'s and SC(k 's for

identifying the best component cluster or clusters under the following

situations:

1. When the mixture algorithm initially partitions the data into equal

size groups;

2. when tne data initially reorderea to iake the problem ii"Icult or

the mixture algorithm;
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3. When the results from k-means algorithm are used to initialize the

mixture algorithm to avoid the problem of local maxima of the like-

lihood function;

4. When a special initialization scheme is used to initialize the

mixture algorithm which is proposed by this author; and finally

5. When a special initialization scheme is used on the reordered data to

start the mixture algorithm, again to avoid the problem of local

maxima of the likelihood function.

We present all our numerical results under each of the above situations

respectively, as follows.

6.1. When Data Initially Partitioned into Equal Size Groups

When no special initialization is used, the mixture algorithm in the

first step of iteration sets the belonging probabilities equal to one. That

is, P(kI.i) = I when the individual i is from component (or group) k and. zero

otherwise. This initialization is equivalent to partitioning the observations

into equal size groups. Then the algorithm estimates the number of obser-

vations from the kth component in the second step. In the third and fourth

steps, the algorithm estimates the cluster means and the within cluster

variance-covariance matrices, respectively. In the fifth step, the deter-

minants and inverses of the variance-covariance matrices are computed for each

k and then the probability densities, the average densities, and the log like-

lihood function. This cycle is repeated until the maximum-likelihood

estimates of the parameters converge, and until all the individuals or data

units are assigned into their respective component clusters and no further

reallocation occurs.
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Under this situation, we ran k=l, k=2, k=3, k=4, k=5, k=6, and k=7

components or types and computed AIC*(k)'s and SC(k)'s for identifying and

selecting the best component cluster or clusters. We obtained the following

results.

TABLE 6.1.1. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE
IRIS DATA WHEN COVARIANCE MATRICES ARE DIFFERENT BETWEEN CLUSTERS

No. of Types! Inmax L(k)]a No. of Parameters AIC*(k) SC(k)

k mb

1 171.448 14 -300.896 -272.748

2 337.008 29 -587.016 -528.709*

3 371.177 44 -610. 354* -521.887**

4 385.842 59 -594.684** -476.057

5 397.178 74 -572. 356 -423. 567

6 436.148 89 -605.296 -426.349
K=7 439.528 104 -567.056 -357.950

Where p=4 Variables, n=150 Observations, and

a. From Iterative Maximum LikelihoodEstimates in Mixture Model
After Convergence TOOK Place when 36 Iterations were used.

b. m = kp+k-l+kpP + l) = Number of Parameters.

c. AIC*(k) = -21n[max L(k)] + 3m.

d. SC(k) = -2ln~max L(k)] + mln(n).

* First Minimum AIC* and SC.

** Second Minimum AIC* and SC.
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TABLE 6.1.2. THE AIC* (k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. of Types ln[max L(k)]a No. of bParameters AIC *((k)c SC(k) d
k m -11

1 171.448 14 T -300.896 -272.748

2 254.915 19 -452.830 -414.629

3 295.009 24 -518.018 -469.763

4 328.314 29 -569.628 -511.321

5 334.076 34 -566.152 -497.791**

6 339.142 39 -561.284 -482.870

K=7 355.353 44 j -578.706* -490.176

Where p=4 Variables, n=150 Observations, and

a. From Iterative Maximum Likelihood Estimates in Mixture Model
After Convergence Took Place when 36 Iterations were used.

b. m = kp+k-1+ + = Number of Parameters.

c. AIC*(k) = -2ln[max L(k)] + 3m.

d. SC(k) = -21n[max L(k)] + mln(n).

* First Minimum AIC* and SC.

** Second Minimum AIC* and SC.

Examining each table carefully, starting with Table 6.1.1 where the

covariance natrices are different between clusters (or types), we see that the

fi-st minimum AIC* is when k=3 types, the second minimum AIC* is when k=4

:.oes. That is, when k=3 types we have the best mixture submodel. This

inaicates that t.ere are indeed three types of species in the iris data. On
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the other hand, the first minimum SC is when k=2 types, and the second minimum

SC is when k=3 types. Thus, according SC -=2 types is the best mixture

submodel indicating the fact that SC favors lower-dimensional models when

compared with Akaike's AIC*. Nevertheless, the second minimum SC is when k=3

types where also AIC* achieves its first minimum. Hence, the mixture model has

recovered the known structure among the 150 iris plants and we are capable of

identifying it by using the minimum AIC* and the minimum SC procedures. For

tne three-types solution, by examining the confusion matrix of group member-

ship, we see further that the I. setosa (Type or Cluster 1) were completely

recovered, as 1. virginica (Type or Cluster 3). However, five plants of

I. versicolor (Type or Cluster 2) were classified with Type 3 and therefore

these could be regarded as misclassified.

In Table 6.1.2 where the covariance matrices are considered to be equal

between clusters (or types), we see that the first minimum AIC* is when k=7

types, the second minimum AIC* is when k=4 types. On the other hand, SC favors

k=4 first, and then k=5 to be the second hest mixture submodel. These results

are not surprising since the population covariance matrices of the three types

of irises are not equal to each other. Moreover, since mixture analysis

attempts to find maximum-likelihood estimates of the parameters, the best

solution for our purposes is the one with the greatest likelihood, or the

greatest log likelihood. And hence, if we compare ln[max L(k)] of Table 6.1.1

and Table 6.1.2, respectively, we see that we have the greatest log likelihoods

for each component clusters in Table 6.1.1, except when k=1 of course. Thus,

this suggests that we should use the results of Table 5.1.1 where the

covariance matrices are different for the iris data.
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6.2. When Data Initially Reordered

In this case, we made the problem intentionally harder for the mixture

algorithm through the reordering of the iris data sequentially. We chose first

three species from each group and sequentially reordered the data until all the

150 flowers were scrambled completely. Such reordering of the data makes the

algorithm start at different initial estimates of the parameters. The purpose

of doing this is to obtain satisfactory initial estimates of the parameters

which are essential if we need to avoid misleading solutions.

We ran again the NORMIX program assuming both different and equal

covariance matrices between the clusters (or types) for k=1, k=2, k=3, k=4,

k=5, k=6, and k=7 types. For each of the clustering alternatives, we computed

AIC*(k)'s and SC(k)'s to be able to identify the best type and consequently

determine the exact number of types. For these our results are shown in Tables

6.2.1 and 6.2.2.

TABLE 6.2.1. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE DIFFERENT RETWEEN CLUSTERS

No. of Typesi lnCmax L(k)]a No. of Parameters AIC* k)c SC(k)

k __mb__

1 171.448 14 -300.896 -272.7a8

2 254.235 29 -427.470 -369.162

3 361.859 44 -591.713* -503.251*

4 376.186 59 -575.372** -156.745"

5 380.982 74 -539.964 -391.177

6 245.1414 89 -223.282,4 - 4d.3374

<=7 d26.002 104 -540.004 -330.97

* First Minimum AIC* and SC.

** Second Minimum AIC* and SC.

1:C* 3nd SC Values During 5th Iteration. Mixture Algorithm Halted at
'ti Iteration. Singular Variance-Covariance Matrix.
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TABLE 6.2.2. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. of Types In[max L(k), a  No. of Parameters AIC*(k) c  SC(k) d

k mb

1 171.448 14 -300.896 -272.446

2 191.137 19 -325.274* -287.072*

3 191.137 24 -310.274** -262.018*

4 191.137 29 -295.274 -236.965

5 182.611 34 -263.222 -194.861

6 191.137 39 -265.274 -186.859

K=7 191.136 44 -250.272 -161.806

* First Minimum AIC* and SC.

** Second Minimum AIC* and SC.

# a, b, c, and d are as in Tables 6.1.1 and 6.1.2.

Now examining Tables 6.2.1 and 6.2.2, we see in Table 6.2.1 that the first

minimum AIC* and SC occur at k=3 types, the second minimum AIC* and SC occur at

k-4 types. Thus, both criteria choose k=3 types as the best mixture submodel.

In Table 6.2.2, however, we see completely the opposite of the results in

Table 6.2.1. Here, the first minimum AIC* and SC both occur at k=2 types, and

the second minimum AIC* and SC occur at k=3 types. We note, however, that,

ln[max L(k)], except k=1, has converged to the same value for k=2,3,...,7 types

even when we used 36 iterations. That is, ln~max L(k)] for k=2,...,7 are all

stationary. Again, since mixture analysis attempts to find maximum-likelihood

estimates of the parameters, the best solution for our purposes is the one with
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the greatest likelihood, or the greatest log likelihood. Therefore, comparing

Infmax L(k)] of Table 6.2.1 and 6.2.2, we see that ln[max L(k)] are the greatest

for each component clusters in Table 6.2.1, except when k=1. This suggests

again that we should use the results of Table 6.2.1 where the covariance

matrices are different for the iris data. However, one should not be puzzled

with the noncovergence of ln[max L(k)] in Table 6.2.2, since we are not always

guaranteed convergence in iterative procedures, nor are we guaranteed that the

local optimum is always global. We show such a result to demonstrate that

unexpected things also might happen.

6.3. When Data Initialized by K-Means Algorithm

It is a well known fact among the users of cluster analysis techniques

that in the multivariate situation satisfactory or good initial estimates for

the parameters are almost essential to start the iterative clustering

algorithms to avoid misleading solutions. Specially, in the mixture analysis,

there may be many different solutions of the maximum likelihood equations.

Therefore, suitable initial values for the parameters are crucial when fitting

mixtures of multivariate normal distributions to data to avoid the problem of

local maxima of the likelihood function.

In the literature, Hartigan (1975, p. 124), Everitt (1981), and others,

suggest "k-means" algorithm to be applied to data first, and then take the

resulting cluster centroids (or means), etc., as starting values for component

mean vectors, etc., in the maximum likelihood estimation algorithm. Following

their suggestions, we ran "k-means" algorithm by using the 3MDP le-MEANS

PROCEDURE and asked for k-1,2,...,7 clusters nn the 150 iris plants. '!e then

tOoK tne resulting cluster centroids for each k and ijsed tnem as starting

ialues for component mean vectors in the mixture analysis for k=1,2,...,7.

We obtained the following ,esults.
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TABLE 6.3.1. THE AIC*(k)Is AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. of Types ln[max L(k)] a  No. of garameters AIC*(k)c SC(k)d
k m

1 171.448 14 -300.896 -272.748

2 337.008 29 -587.016"* -528.709*

3 358.709 44 -585.418* -496.950**

4 314.804# 59 -452.608# -333.981#

5 412.012 74 -602.024* -453.237

6 393.591# 89 -520.182#  -341.236# e.

K=7 391.616 #  104 -471.2324 -262.126;

TABLE 6.3.2. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. of Types In[max L(k)] a  No. of garameters AIC*(k)C SC(k) d
k m

1 171.448 14 -300.89 -272.748

2 254.915 19 -452.830 -414.62q

3 295.001 24 -518.002 -469.763

4 328.314 29 -569.628" -511.320*

5 334.065 34 -566.130 -497.768**

339.119 39 -561.238 -482.824

<z7 352.781 44 -573.562* -485.095

* First Minimum AIC* and SC.

Second Minimum AIC* and SC.

A:C" and SC Values During 5th Iteration. Mixture Algorithm Halted at
it'i :tration. Singular Variance-Covariance 4atrix.

i, , c, and d are as in Tables ;.1.1 and A.1.2.
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Looking at Table 6.3.1 and 6.3.2, we see in Table 6.3.1 :nat the first

minimum AIC* occurs at k=5 types and the first minimum SC occurs at '=? types.

The second minimum AIC* occurs at k=2 types and at k-3 since the values are

significantly close to each other. Also, the second minimum SC occurs at k=3

types. For k=4, k=6, and k=7 types, the mixture algorithm halted at 6th

iteration due to singular variance-covariance matrix.

In Table 6.3.2, we see that the first minimum AIC* occurs at k=7 types

and the second minimum AIC* occurs at k=4 types. On the other hand, the first

minimum SC occurs at k=4 types and the second minimum SC occurs at k=5 types.

We further note here that these results are identical to those obtained in

Table 6.1.2, when data initially partitioned into equal size groups by the

algorithm.

Even though using "k-means" or other clustering techniques as a tool of

initializing clusters appear to be the most obvious way to obtain suitahle

initial values for the parameters in the mixture analysis, but such an

approach in general may not be the best as we shall see in the next two sec-

tions, that is, in Section 6.4 and 6.5, respectively.

6.4. When Data Initialized by Special Initialization Scheme

In Section 6.3, we gave the results of the mixture analysis when we

initialized the mixture algorithm by using the results of 'k-means" algorithm

as our inputs or starting values for component mean vectors. As we ientioned,

such an approach in general may not be the best and cheap. Therefore, in this

section, we shall propose a simple and less expensive initialization scheme

which has intuitive appeal and by-and-large pnilosophically is acceptaole.

The proposed initialization scheme is as follows:

(i) We first compute the maximum and the minimum of tne variables across
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all data. We denote this by Xmax and Len t Xmax - min

the range of the data on the variable vector X.

(ii) Next, we compute the average of Xmin and Xax We denote this bymi ~max"

II= (Xmin + max )/2. To initialize k=l component mixture, we use

as the component mean vector in the mixture analysis.

(iii) To initialize k=2 component mixtures, we compute X1 'min ( X'/2 '

and = (X1l + X )/2 to be entered as the component mean vectors-22 -11 max

in the mixture analysis.

(iv) To initialize k=3 component mixtures, we compute X (Xmn + X2 1 )/2,

!32 = (X21 + X22)/2, and X33 = (X22 + Xmax
)/2 to be entered as the

component mean vectors in the mixture analysis, and so on.

Thus, we continue in this fashion until we generate all the initial mean

vectors sequentially, and until we reach the larger hypothesized number of

component clusters K. In doing this, we remain in the range of the data on the

variable vector X. Such an initialization scheme sets up cluster centers

regularly spaced at intervals on eacb variable which is less expensive and easy

to program. Of course, we can also consider outer points (i.e., the points

outside of the data range) and use the above initialization scheme to initial-

ize the mixture and other clustering algorithms, which we did -ot pursue it

nere.

Our results ootained from this special initialization scheme are shown in

Tables 6.4.1 and 5.4.2.
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TABLE 6.4.1. THE AIC *(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE DIFFERENT BETWEEN CLUSTERS

* C
No. of Types In[max L(k)]a No. of Parameters AIC (k)' SC(k)d

k mb _I

1 171.448 14 -300.896 -272.748

2 337.008 29 -587.016"* -528.709*

3 371.177 44 -610.234" -521.887*

4 381. 395 59 -585. 790 -467. 163

5 405.493 74 -588.986 -440.200

6 426.428 89 -585.856 -406.911

K=7 433.193 104 -554.386 -345.279

TABLE 6.4.2. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. of Types In[max L(k)] a  No. ofbP~rameters AIC*(k) c SC(k)d

k 
m b I

1 171.448 14 -300.896 -272.748

2 254.915 19 -452.830 -414.629

3 295.009 24 -518.018 -469.763

4 315.296 29 -543.592 -485.284

5 333.998 34 -565.996** -;97.535*

6 341. 242 39 -565.448 -487.070

K=7 355.339 44 -578.678* -490.210O

* First Minimum AIC* and SC

** Second Minimum AIC* and SC

a, b, c, and d are as in Tables 6.1.1 and 6.1.2.
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:xamining each table carefully, starting with Table 6..1 where tMe

covariance matrices are different between clusters !or types), we see that tne

first minimum AIC* is when k=3 types, the second minimum AIC* is when k=2

types. hat is, when k=3 types we have the best mixture submodel. On the

other hand, the first minimum SC occurs at k=2 types, and the second minimum SC

occurs at k=3 types. Thus, according to SC k=2 types is the best mixture sub-

model. Comparing these results with the results of mixture analysis obtained

from initializing the mixture algorithm by using "k-means" results given in

Table 6.3.1, we clearly see that our initialization scheme gives better results

than what is suggested in the literature.

In Table 6.4.2 where the covariance matrices are considered to he equal

between clusters (or types), we see that the first minimum AIC* occurs at k=7

types and the second minimum AIC* occurs at k=5 types. SC favors the same

mixture submodels but in the reversed order as compared to AIC*. Again these

results are not surprising since the population covariance matrices of the

three types of irises are not equal to each other, and ln[max L(k)J values

are greatest for each component cluster in Table 6.4.1 as compared to the

ln[max L(k)] values given in Table 6.4.2, except when k=1.

6.5. When Special Initialization Scheme is Used on Reordered Data

Finally, when ae use the special initialization scheme presented in Section

6.4 on the reordered data to start the mixture algorithm to avoid the problem

of local maxima of the likelihood function, we obtained the following resu!-s.
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TABLE 6.5.1. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

No. of Types ln[max L(k)]a No. of Parameters AIC*(k)C SC(k )d

k mb i

1 171.448 14 -300.896 -272.748

2 257.235 29 -427.470 -369.162

3 358.219 44 -584. 438* -495.970*

4 374.422 59 -571.884** -453.217*"

5 220.659# 74 -219.318# - 70.532#

6 218.458# 89 -169.916# 9.029#

K=7 226.395# 104 -140. 790 #  
- 68.314 #

TABLE 6.5.2. THE AIC*(k)'s AND SC(k)'s FOR STANDARD MIXTURE MODEL FOR THE IRIS
DATA WHEN COVARIANCE MATRICES ARE EQUAL BETWEEN CLUSTERS

a° r a o d
No. of Types In~max L(k) No. of garameters AIC*(k) SC(k)

k m

1 171.448 14 -300.896 -272.748

2 191.135 19 -325.270 -287.068

3 295.009 24 -518.018" -469.763*

4 287.889 29 -488.778** -430.470**

5 171.531# 34 -241.062# -172.7014

6 171.559# 39 -226.118# -147.704#

K=7 171.576# 44 -211.152# -122.685 #

* First Minimum AIC* and SC.

** Second Minimum AIC* and SC.

AIC* and SC Values During 5th Iteration. Mixture Algorithm Halted at
6tn Iteration. Singular Variance-Covariance Matrix.

a, 0, c, and d are as in Tables 6.1.1 and 6.1.2.

.. . ...... .. . ... ...II. . . . . .. .. ..' ' " ' ' °'",i.. ... . . . . .. .r . . I
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Looking at Tables 6.5.1 and 6.5.2, we see that under both different and

equal covariance matrices between clusters (or types), the first minimum AIC*

and SC occur at k=3 types. The second minimum AIC* and SC occur at k=4 types.

Thus, in this case according to AIC* and SC k=3 types is the best mixture sub-

model. Comparing the values of AIC* and SC for k=2,3, and 4 types in Table

6.5.1 and 6.5.2, respectively, we can see that the AIC* and SC values in Table

6.5.2 are larger than the AIC* and SC values in Table 6.5.1, suggesting to us

that when we are clustering iris data, and in general , we should use different

covariance matrices rather than using equal covariance matrices. Thus, model-

selection criteria can also be used to decide whether or not to assume a common

covariance matrix.

From the results in Table 6.5.1 and 6.5.2, we further note that it

suffices to fit K=5 hypothesized number of mixtures to Fisher iris data rather

than fitting K=7 multivariate normal mixtures.

7. Conclusions and Discussion

From our numerical results in Section 6, we see that model-selection

criteria can indeed be used to estimate k, the number of component clusters (or

types) in the mixture model, when we do not know the group structure of the

data a priori.

Summarizing the results on the number of i- s the minimum AIC* and SC

selected each mixture submodel across all the tables given in Section 6, we

obtain the following frequencies.
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TABLE 7.1. SUMMARY OF THE RFSULTS OF AIC*(k)'s AND SC(k)'s FOP STANDARn
MIXTURE mOPEL FOR THE IRIS DATA

No. of Types Number of Times Number of Times
k AIC*(k) Selected SC(k) Selected

1 0 0

2 2 5

3 4 2

4 0 2

5 1 1

6 0 0

K=7 3 0

Looking at Table 7.1, we see that AIC identifies the correct group

structure (i.e., k=3 types) in the Fisher iris data four times as compared to

SC which identifies the correct structure twice. AIC* chooses k=2 types twice,

SC chooses k=2 types five times indicating that SC favors lower-dimensional

models as compared to AIC*. The case where k=7 types was chosen three times by

AIC* corresponds to the results where the covariance matrices between clusters

were assumed to be equal instead of different. In these applications, however,

these criteria often agree in identifying the correct model.

In the literature, objections have been raised that minimizing the AIC*

does not produce an asymptotically consistent estimate of the model. For this,

we shall refer tne reader to Schwarz (1978), 3hansali and Downnam (1977). 3ut as

also mentioned by Larimore (1983), no strong reasons have been offered for why

such consistency would be desirable or would give sensible results generally,

since in riost applications such as the one we presented in this paoer, we can

vary tie class of alternative nodels hit not the number of observations. As



AKaike (1981) states: "... This inconsistency of order letermination does not

necessarily mean a serious problem, as expected deviation of the fitted model

in terms of entropy decreases to its minimum possible value as the data length

tends to infinity. This means that the procedure is inconsistent in terms of

our basic criterion. If AIC is replaced by

-2 ln(maximized likelihood)

+f(n)(number of free parameters),

where f(n) is a function which increases without bound, yet such that f(n)/n n f,

as n tends to infinity, then the corresponding MAICE produces a consistent

estimate of the order when this does exist."

Therefore, consistency for a given class of models within a fixed number of

observations is not a problem for a good model-selection criterion. Specially

in classification and clustering problems we do not have to worry about con-

sistency or the order of a model.

For example, from Table 7.1, we see that Schwarz' Criterion (SC) which is

a consistent modified version of AIC, does not necessarily pick tip the correct

group structure more often than AIC* in the Fisher iris data even wnen it is

known a priori tnat there are three types of species of irises. So the

4uestion is: "What kinds of penalty should the decision maker pay while

trying to expect consistency for the model wnen indeed no consistency problem

exists in a finite sample situation?"

Thus, it seems that to argue consistency when data contains a finite

sample size is fruitless. The performances of these model-selection criteria

most often depend strongly on the class of models, on the natire of tle prior

specification corresponding to whicn these criteria are lerived, and of course,
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on the type of data sets they are applied.

Thus, in concluding, we see that our numerical results clearly demon-

strate the potential of both Akaike's Information Criterion (AIC), and

Schwarz' Criterion (SC) in identifying the best clustering alternative or

alternatives, and estimating the number of component clusters present in the

mixture model. These model-selection criteria are defined without any

reference to a particular null hypothesis and are measures of the badness of

the model which are free from the ambiguities inherent in the application of

conventional procedures.
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